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A method is proposed for  construct ing coordinate  functions, with the boundary conditions 
as well as the p roper t i e s  of the opera to r  in the boundary-value problem taken into account,  
which will appreciably  improve the accu racy  of the f i r s t  few approximations.  

Di rec t  methods a re  widely used for  the p rac t i ca l  solution of boundary-value problems in heat con- 
duction [1-3]. L e t  it be requ i red  to de te rmine  the t e m p e r a t u r e  field descr ibed  by the equation 

c32t O~t 02t ~ (x ,  y, z) 
= = - -  - ~ - - -  + - -  = ( I)  

L[t] Ox ~ OY~ Oz 2 ~, 

i n s ide  some region ~2 and by the relat ion 

t =  t o(x, y, z), (2) 

at the boundary S. 

In o rder  to obtain an approximate  solution to the boundary-value problem (1)-(2) by a d i rec t  method, 
it is n e c e s s a r y  to st ipulate a p r io r i  an express ion  approximating the sought solution. 

It is well known [1-3] that the choice of the approximating function affects s t rongly both the con- 
vergence  of success  ive approximat ions  and the complexi ty of subsequent calculations,  making the appli-  
cabi l i ty  of d i rec t  methods l a rge ly  dependent on the appropr ia te  choice of the approximating function. As 
a ru le ,  in p rac t i ce  one se lec ts  functions l inear ly  dependent on some number  of undetermined p a r a m e t e r s ,  
and among the most  often used forms convenient for  a l a rge  class  of problem is [1]: 

t .  = r (x, y, z) ~ ~'~,,~,,~ ~'k"m'~ + ~  o f (X, y, Z) 
~,m,~=o (3) 

( n = 0 ,  1, 2 . . . ) ,  

where  f(x, y, z) is an a r b i t r a r y  function sat isfying the nonhomogeneous condition (2) at  the boundary S, 
ak ,m,  s a re  undetermined p a r a m e t e r s ,  and ~(x, y, z) is a continuous function with bounded f i r s t  par t ia l  
der iva t ives  inside region .q and satisfying the conditions 

r y, Z ) ~ 0  inside f], o(x, y, z ) = 0  on S. 

The corresponding sys tem of coordinate  functions 

co(x, y, z)xkymz s (k, m, s = 1, 2 . . . )  

is re la t ive ly  complete  inside the given region a [1], which ensures  that the success ive  approximations 
t n will converge at n - -  ~o to the exact solution to the original boundary-value problem (1)-(2), if p a r a m -  
e t e r s  ak ,m,  s a re  de termined  according to the Ritz method or  the Bubnov-Ga le rk in  method. It must also 
be noted that (3) sat isf ies  exact ly  the boundary~ condition (2) in the cons idered problem.  

(4) 

(5) 
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The basic problem in st ipulating the approximation in the form (3) is to cons t ruc t  the w(x, y, z) func- 
tion. The genera l  ru les  fo r  construct ing it have been given in [I]. Recent ly  Rvachev proposed an effective 
method of construct ing the function co(x, y, z) with the aid of the R-fonct ions apparatus and logic a lgebra  
[4]. These  lmown methods of construct ing the co(x, y, z) function do not account for the p roper t i e s  of the 
opera tor  in the boundary-value  problem,  however ,  so that the success ive  approximations (4) converge 
slowly and a sa t i s fac to ry  accuracy  requ i res  h igh-o rde r  approximations.  This has the following undesirable  
consequences:  f i r s t  of all,  the solution becomes  quite unwieldy and, secondly,  the amount of calculations 
involved in finding the undetermined p a r a m e t e r s  increases  fast .  The authors  he re  propose  to use for  
function co(x, y, z) the approximate  solution to the problem according to the extended method by Kantorovich 
[5]. The function w(x, y, z) cons t ruc ted  in this way will sa t i s fy  all s t ipulated requ i rements  (4) and account 
for  the p roper t i e s  of the ope ra to r  in the boundary-value  problem with r e spec t  to all var iab les ,  which con-  
t r ibutes  to a much fas te r  convergence of the success ive  approximations (3) to the exact solution, while the 
accu racy  needed in p rac t ica l  applications will be attained a l ready  in the f i r s t  few approximat ions.  

Example .  Le t  it be requi red  to integrate the equation 

82t O2t 
- - .  + -- 1 (6) 

ax ~ ay ~ 

inside the rec tangle  ~2 i - a ,  a; - b ,  b] with the condition that 

t o = 0 (7) 

on its contour.  

In [2] a re  given the f i r s t  th ree  approximations to the boundary-value  prob iem (6)-(7) according to 
the Ritz method, with the function w(x, y) se lec ted  in the conventional manner  to have he re  the following 
form:  

o) (x ,  y )  --- (a  ~ - -  x 2) (b ~ - -  y~).  (8)  

The said approximations a re  

t ('~) = (a ~ - - x  2) (b 2 - - V 0  [a~m) + a~ '~)x2 + a~")V 2] (m = 1, 2, 3). (9) 

Thus,  it is possible to es t imate  the effect iveness  of the proposed method by select ing the function 
w, namely  by comparing it with known solutions which use a function w(x, y) of the form (8). It was on this 
basis that the boundary-value problem (6)-(7) had been se lec ted  for i l lustrat ion.  

We obtain an approximate  solution to the problem (6)-(7) by the Ritz method, with the approximating 
express ion  in the fo rm (3) and with function co (x, y) cons t ruc t edby the  method just  shown. F o r  this purpose 
it is neces sa ry ,  f i r s t  of all,  to solve the problem at hand by the extended Kantorovich method [5]. As r e -  
suit ,  we have 

2 ( 1 - -  thp--~m~ 1 - I 
[ =  p~ ) , chp~ ] chpu (10) 

1 p 2 ( 2 _ 3  thp~ + _ _  
p-~-- ch2p~ ) \ 

P a r a m e t e r s  Px and py a re  re la ted  as fotlows: 

a th py s = - - ,  (11) 
Pv ~ th Pv b 

th p:~ 1 

P~ ch2 Px (12)- 
z~ = ~ g  th p~ 1 

2 - - 3  @ - -  
Px ch 2 p~ 

Express  ion (10) exact ly  sa t i s f ies  the original  boundary condition (7) and all r equ i rement s  (4) imposed 
on function c~, so that express ion  (10) may be used for  function co without the constant factor .  Thus, 

x ch py g 

( chp, --~- ) / c _ h  ~ \ ch py-b-~]" (13) ~ o ( x , v ) =  I -  - ! 1  
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TABLE 1. N u m e r i c a l  Calculat ions 

m exact accordin I 
t (0. 0) 

0,2930 

Values oft(0.0} and &(O.O) 
aceordingt~(9) 

tcm)(o, O) 

0,2872 
0,2924 
0,2927 

to(lq7 I 
8t(m)(O. o) % t(m)(O, O) ] ~(m)(o, O) % 

--2,0 0,3125 
--0,2 0,3038 
--0,1 0,2922 

6,9 
3,7 

--0,3 

The cor responding  s y s t e m  of coordinate  functions (5) 

Y 

{%"} = ch p~ ch py j 

is r e l a t ive ly  complete  ins ide the s t ipula ted region and, t he re fo re ,  the sequence of approximat ions  

X 
ch Px --a-- ch P v y  

t~ = 1 ch p~ 1 ch Pv h,~ 

(14) 

(15) 

with coeff icients  ak ,  s found by  the Ritz method or the B u b n o v - G a l e r k i n  method will at  n ~ oo tend toward 
the  exact  solution to the boundary-va lue  p r o b l e m  (6)-(7). Taking into account  the s y m m e t r y  of this p r o b -  
l e m ,  in the actual  s e a r c h  for  the approx ima te  solution, we should exp res s  the approximat ing  function (15) 
a s  

x ch py y n 
( chpx--a-- ) ( 1 b)Zo2p,2qx2PY~q. (16) 

t .  ---- 1 eh p~ eh py 
p,q-~-O 

In o rde r  to r ea l i ze  how fas t  the succes s ive  approx imat ions  (16) converge  and to e s t ima te  the a c -  
cu r acy  of the f i r s t  few approx ima t ions ,  we will consider  the f i r s t  t h ree  of them.  These  approximat ions  
a r e  obtained by re ta ining the f i r s t  th ree  p a r a m e t e r s  in (16): 

ch Px ~ ch pu 

( a ) b ),,(m,+a~)x~+a~o~)y,) (17) t tin) = 1 ch Px 1 ch Pv wo.o . 

( r e = l ,  2, 3). 

_(,) _(51 Here  ="0,2 = u0,2 = 0. Expres s ions  for  the r emain ing  p a r a m e t e r s  a r e  found f rom the Ritz equations.  
N u m e r i c a l  r e su l t s  have been obtained for  the spher i ca l  ease  where  a = b = 1 and the r e su l t s  a r e  shown in 
Table  1. The values of t (m)(0,0)  w e r e  calcula ted accord ing  to (9) and (17), using functions w cons t ruc ted  
by the conventional and by the p roposed  method,  r e spec t ive ly .  The re la t ive  e r r o r s  in the values of the 
sought function 

8t (m) (0, o) = #m)(~ 0 ) -  t (0, 0) 
t(0, 0) 

w e r e  evaluated by compar ing  them with the exact  value t(0,0) found f r o m  the solution in [1]. 

Solution (17) is m o r e  accu ra t e  than solution (9), accord ing  to Table  1, even though the example  of a 
s q u a r e  region is the mos t  inconvenient one for  compar i son ,  because  in such a region the l a t t e r  is mos t  a c -  
cura te  while the f o r m e r  is l e a s t  accu ra t e .  

With a function co accounting for  the p r o p e r t i e s  of the ope ra to r  in the boundary-va lue  p rob l em,  t h e r e -  
fo re ,  the approx imat ing  expres s ion  (3) l eads  to a f a s t e r  convergence  of the succes s ive  approximat ions  and 
to a be t t e r  a c c u r a c y  of the f i r s t  few ones - which is a v e r y  impor tan t  advantage f r o m  the p rac t i ca l  s t and-  
point .  

t (x,  y,  z) 
t(m) 
co(x, y, z) 

N O T A T I O N  

is the sought t e m p e r a t u r e  field; 
is the m - t h  approximat ion  of the sought t e m p e r a t u r e  field; 
is the dis t r ibut ion densi ty  of ene rgy  sou rces ;  
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X, y, z are the Cartesian space coordinates; 
is the thermal conductivity. 

1. 

2o 

3. 
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