CONSTRUCTION OF COORDINATE FUNCTIONS FOR SOLVING
BOUNDARY-VALUE PROBLEMS IN HEAT CONDUCTION BY
DIRECT METHODS
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A method is proposed for constructing coordinate functions, with the boundary conditions
as well as the properties of the operator in the boundary~value problem taken into account,

which will appreciably improve the accuracy of the first few approximations.

Direct methods are widely used for the practical solution of boundary-value problems in heat con-
duction [1-3]. Let it be required to determine the temperature field described by the equation
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at the boundary S.

In order to obtain an approximate solution to the boundary-value problem (1)-(2) by a direct method,
it is necessary to stipulate a priori an expression approximating the sought solution.

It is well known [1-3] that the choice of the approximating function affects strongly both the con-
vergence of successive approximations and the complexity of subsequent calculations, making the appli-
cability of direct methods largely dependent on the appropriate choice of the approximating function. As
a rule, in practice one selects functions linearly dependent on some number of mdetermined parameters,
and among the most often used forms convenient for a large class of problem is [1]:
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where (x, y, z) is an arbitrary function satisfying the nonhomogeneous condition (2) at the boundary S,
@k m,s are mdetermined parameters, and w(x, y, z) is a continuous function with bounded first partial
derivatives inside region {2 and satisfying the conditions

o(x, y, 2) >0 inside 9, o, y, =0 on S. (9

The corresponding system of coordinate functions
o(x, y, 2) xtymz (kym, s=1,2...) (5)

is relatively complete inside the given region £ [1], which ensures that the successive approximations
ty will converge at n — « to the exact solution to the original boundary-value problem (1)-(2), if param-~
eters ay 5, g are determined according to the Ritz method or the Bubnov—Galerkin method. It must also
be noted’thét (3) satisfies exactly the boundary condition (2) in the considered problem.
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The basic problem in stipulating the approximation in the form (3) is to construct the w(x, y, z) func-
tion, The general rules for constructing it have been given in [1], Recently Rvachev proposed an effective
method of constructing the function w(x, y, z) with the aid of the R-functions apparatus and logic algebra
[4]. These known methods of constructing the w(x, y, z) fimction do not account for the properties of the
operator in the boundary-value problem, however, so that the successive approximations (4) converge
slowly and a satisfactory accuracy requires high-order approximations. This has the following undesirable
consequences: first of all, the solution becomes quite unwieldy and, secondly, the amount of calculations
involved in finding the wmndetermined parameters increases fast. The authors here propose to use for
function w(x, y, z) the approximate solution to the problem according to the extended method by Kantorovich
[5]. The function w(x, y, z) constructed in this way will satisfy all stipulated requirements (4) and accoumt
for the properties of the operator in the boundary-value problem with respect o all variables, which con-~
tributes to a much faster convergence of the successive approximations (3) to the exact solufion, while the
accuracy needed in practical applications will be attained already in the first few approximations.

Example. Let it be required to integrate the equation
o &t
ox® oy

=1 (6)

inside the rectangle Q [-a, a; —b, b] with the condition that
ty =0 {7

on its contour.

In [2] are given the first three approximations to the boundary-value problem (6)-{7) according to
the Ritz method, with the function w(x, y) selected in the conventional manner to have here the following
form:

o(x, §) = (@ — ) (0" — ). ©
The said approximations are

£ = (@ — 1) (0 — ) (™ + o™+ a§ ] (m=1, 2, 3). (9)

Thus, it is possible to estimate the effectiveness of the proposed method by selecting the function
w, namely by comparing it with known solutions which use a function w(x, y) of the form (8). It was on this
basis that the boundary-value problem (6)-(7) had been selected for illustration.

We obtain an approximate solution fo the problem (6)-(7) by the Ritz method, with the approximating
expression in the form (3) and with function w(x,y)constructedbythe method justshown. For this purpose
it is necessary, first of all, to solve the problem at hand by the extended Kantorovich method [5}. As re-
sult, we have
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Parameters py and py are related as follows:
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Expression (10) exactly satisfies the original boundary condition (7) and all requirements (4) imposed
on function w, so that expression (10) may be used for function w without the constant factor. Thus,
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TABLE 1. Numerical Calculations
Values of t(0, 0) and &(0,0)

m exact according to (17Y according tw(9)
(0, 0) M0, 0 | 6™, 0%| Mo, 0 |8™0,0%
1 0,2872 —2,0 0,3125 8,9
2 0,2930 0,2924 —0,2 0,3038 3,7
3 0,2927 —0,1 0,2922 —0,3
The corresponding system of coordinate functions (5)
X
chp, — chp, b
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is relatively complete inside the stipulated region and, therefore, the sequence of approximations
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with coefficients a5 found by the Ritz method or the Bubnov—-Galerkin method will at n — « tend toward
the exact solution to the boundary-val ue problem (6)~(7). Taking into accomt the symmetry of this prob-
lem, in the actual search for the approximate solution, we should express the approximating function (15)
as
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In order to realize how fast the successive approximations (16) converge and to estimate the ac-
curacy of the first few approximations, we will consider the first three of them. These approximations
are obtained by retaining the first three parameters in (16):
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Here aéi,(), =a‘()1,g =a§2’g = 0. Expressions for the remaining parameters are found from the Ritz equations.
Numerical results have been obtained for the spherical case where @ =b =1 and the results are shown in
Table 1. The values of t(M)(0, 0) were calculated according to (9) and (17), using functions w constructed
by the conventional and by the proposed method, respectively. The relative errors in the values of the
sought function

#m(0, 0) — £(0, 0)

(m) - _
8™, 0) = 00

were evaluated by comparing them with the exact value t(0,0) found from the solution in [1].

Solution (17) is more accurate than solution (9), according to Table 1, even though the example of a
square region is the most inconvenient one for comparison, because in such a region the latter is most ac-
curate while the former is least accurate,

With a function w accounting for the properties of the operator in the bommdary-value problem, there-
fore, the approximating expression (3) leads to a faster convergence of the successive approximations and
to a better accuracy of the first few ones — which is a very important advantage from the practical stand-
point,

NOTATION

t(x, y, z) is the sought temperature field;
t(m) is the m-th approximation of the sought temperature field;
w(x, y, z) Is the distribution density of energy sources;
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X,y,z are the Cartesian space coordinates;

A

[

Wt o W oo

is the thermal conductivity.
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